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Abstract. We consider self-avoiding walks on the simple cubic lattice, confined to the half-space
z > 0. In addition, the walks interact with the planez = 0 and have a vertex–vertex interaction.
The walks can adsorb at the planez = 0. The location of the adsorption phase transition depends,
in general, on the contact interaction. We use Monte Carlo methods to investigate the form of the
adsorption phase boundary in the expanded phase region.

1. Introduction

Self-avoiding walks on a lattice are a good model of linear polymer molecules in dilute solution
in a good solvent (Madras and Slade 1993). If a short-range interaction between the vertices
of the walk is included, we obtain a model in which the solvent quality is recognized. Then
the walk is thought to undergo a transition in the infiniten limit (n stands for the length of the
walk) from the expanded phase to the collapsed phase. Although there is no direct rigorous
proof of the existence of this transition, the numerical results strongly support it. This problem
has been extensively studied by Monte Carlo methods (Mazur and McCrackin 1968, Kremer
et al 1981, Meirovitch and Lim 1989, Grassberger and Hegger 1995a, Tesiet al 1996, Nidras
and Brak 1997).

Self-avoiding walks are also used as a model of polymer adsorption at a solid surface
from dilute solutions. In this case one includes a short-range interaction of the walk with an
impenetrable surface. A version of this model is a self-avoiding walk on the simple cubic
lattice, with the first vertex of the walk at the origin, and no vertex of the walk with a negative
z-coordinate. In addition, each vertex in the planez = 0 contributes an energy term. Such a
walk can be adsorbed into the planez = 0, if this energy is attractive (Hammersleyet al1982).
Similar models in two and three dimensions have been extensively studied using Monte Carlo
methods (Meirovitch and Livne 1988, Meirovitch and Chang 1993, Hegger and Grassberger
1994, Grassberger and Hegger 1995b, Zhaoet al1990), and the location of the phase transition
and values of several critical exponents have been estimated.

As polymer adsorption can occur from solvents of different quality, one is interested in
the interplay between the adsorption and collapse phenomena. As a model, one considers a
self-avoiding walk, restricted to a non-negativez half-space, with an internal (vertex–vertex)
interaction and also a vertex–plane interaction, so that it can exhibit both a collapse transition
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and an adsorption transition. A Monte Carlo study on collapse of self-avoiding walks near a
linear wall in two dimensions has appeared (Chang and Meirowitch 1993), and there is an exact
enumeration study in two dimensions which investigates the form of the phase diagram (Foster
et al 1992). Vrbov́a and Whittington (1996) derived some rigorous results about the form of
the phase diagram in three dimensions, and studied the nature of the phase diagram using
Monte Carlo methods (Vrbová and Whittington 1998). They suggested a phase diagram that
shows four phases: (i) desorbed–expanded, (ii) desorbed–collapsed, (iii) adsorbed–expanded
and (iv) adsorbed–collapsed. Since the estimates of the location of the phase boundaries were
obtained at modest values ofn, they are only approximations to the infiniten behaviour, and
this effect might hide some features of the phase diagram.

One of the ambiguous results from the smalln calculations was the correct shape of the
phase boundary between the desorbed–expanded and adsorbed–expanded phases. The aim of
this paper is to investigate the form of the adsorption phase boundary in the expanded phase
in three dimensions to answer the question whether the solvent quality, in the good-solvent
regime, influences the location of the adsorption phase transition.

2. The model

We consider self-avoiding walks on the simple cubic lattice, confined to the half-spacez > 0
and interacting with the planez = 0. A visit is a vertex of the walk with zeroz-coordinate. In
addition, there is a short-range vertex–vertex interaction and acontactis a pair of vertices of
the walk, unit distance apart, which are not connected by an edge of the walk. We define the
partition function

Zn(α, β) =
∑
v,k

cn(v, k)e
αv+βk (2.1)

wherecn(v, k) is the number ofn-edge walks withv + 1 visits andk contacts,α is the
vertex–plane interaction parameter andβ is the vertex–vertex interaction parameter. The
corresponding free energy is defined

κn(α, β) = n−1 logZn(α, β). (2.2)

The limit limn→∞ κn(α, β) is proved to exist for all finite values ofα for β 6 0 and the
corresponding limiting free energy for polygons exists for all finite values ofα andβ (Vrbová
and Whittington 1996). There is an adsorption phase transition for any value ofβ for the
polygon case, and the location of this phase transition is bounded forβ > 0 as

06 αc(β) 6 A + 2β (2.3)

whereA is a positive constant. We believe that walks show the same behaviour as polygons.
The method is a Markov chain Monte Carlo scheme based on a combination of the pivot

algorithm (Lal 1969, Madras and Sokal 1988) and the ‘local moves’ algorithm (Madras and
Slade 1993). To avoid the long autocorrelation times associated with similar calculations
involving compact phases we implemented this using the multiple Markov chain method (Geyer
1991, Tesiet al 1996). For the details of the implementation see Vrbová and Whittington
(1998).

3. Results and discussion

Our main aim was to investigate adsorption of self-avoiding walks restricted to the half-
spacez > 0, having both vertex–vertex and vertex–plane interactions. In particular, we were
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Figure 1. The locations of the heat capacity peaks forn = 100, adopted from Vrbov́a and
Whittington (1996). The diamonds correspond to peaks in∂2κn(α, β)/∂α

2 at fixedβ, and the
crosses correspond to peaks in∂2κn(α, β)/∂β

2 at fixedα.

interested in the shape of the corresponding phase boundary. Vrbová and Whittington (1998)
investigated this system using moderate lengths of the walks. They estimated locations of the
phase transitions using peaks in the heat capacities. Their results forn = 100 are shown in
figure 1. The peak positions depend onn and finiten estimates are only approximations of
the phase transition locations. With increasingn, the peak positions move towards the real
locations of the phase transitions. Looking at figure 1, we see that the slope of the phase
boundary between the desorbed–collapsed and adsorbed–collapsed phases is clearly positive.
The authors comparedn = 100 andn = 200 data and the shifts in the peak positions were
small, therefore it is reasonable to assume that the slope remains positive even in the infinite
n limit. Interpretation of the results for the phase transition between the desorbed–expanded
and adsorbed–expanded phases is more difficult. The phase transition estimates lie almost on
a horizontal line, and one is not able to predict the infiniten behaviour of the system from the
smalln data, since even small shifts in the peak positions with increasingn can change the final
slope of the phase boundary. Results for much longer walks are therefore needed, together
with extrapolation to the infiniten limit, to obtain the correct shape of the phase boundary.

We decided to perform an extensive Monte Carlo calculation for walks of up to 1600
edges, for several values of the vertex–vertex interaction parameter, and to extrapolate the
estimates of the location of the phase transition to the infiniten limit. By comparing the
resulting estimates for several values ofβ we should be able to obtain the correct shape of the
corresponding phase boundary. Such simulation is very demanding on computer time and,
after several preliminary runs, we decided to use only three values ofβ, although four or even
more values would be probably more convincing. The first value ofβ used is negative. We
choseβ = −0.51 since this value is, in our opinion, small enough to capture any difference in
the location of the transition as compared with the location of the phase transition atβ = 0,
and it is not too small to make the simulation impossible to perform with sufficient accuracy,
which applies especially for the large values ofn. The second value ofβ is, understandably,
chosen to be zero. The third value ofβ is positive. Forn = 100, position of the peak in
∂2κn(α, β)/∂β

2 is aroundβ = 0.46, and the value decreases withn. A current estimate of
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the location of the collapse transition, without the presence of the solid surface, is 0.275 (Tesi
et al 1996), and it is believed that the collapse phase transition occurs at the sameβ value for
the half-space problem in the expanded phase. Thus, we have to useβ smaller then 0.275. We
choseβ = 0.18, a value small enough to be sure that we sample in the expanded phase and
that the vicinity of the collapse phase transition does not influence our results.

We estimated the location of the adsorption transition for these values ofβ, for several
values ofn, and then extrapolated the data to the infiniten limit. Typically, we used a set of
eight or ten values ofα, at fixedβ andn, in a single multiple Markov chain run. These data
were reweighted to obtain estimates at intermediate values ofα.

There are no phase transitions and no singularities in the free energy at finiten. However,
there are estimators of the phase boundary locations for finiten that approach the infiniten
limit as n increases. For finiten, we expect a peak in the ‘heat capacity’∂2κn(α, β)/∂α

2

when we cross a phase boundary and we use the location of this peak as an estimator of the
location of the phase transition. We estimate the location of the peak for various values ofn

and extrapolate to the infiniten limit. Another method of estimating the location of the phase
transition takes advantage of the fact that〈v〉/n is zero, in the infiniten limit, for all α 6 αc
and non-zero otherwise, and we use the intercept of the tangent at the inflection point of〈v〉/n
and theα-axis,αc(n), as an estimator of the upper bound on the phase transition location. As
n → ∞, the estimatorαc(n) approaches a value which is not smaller thanαc. In addition,
we calculated the radius of gyration and the components of the radius of gyration parallel and
perpendicular to the surface. These quantities are other indicators of the location of the phase
boundary.

To locate the phase boundary between the desorbed–expanded and adsorbed–expanded
phases, we carried out multiple Markov chain runs starting atα = 0 and increasedα to a
value above the adsorption transition, keeping theβ value fixed. In figure 2 we show the
α-dependence of∂2κn(α, β)/∂α

2 for n = 50, 100, 200, 400, 800, 1000 and 1600 forβ = 0.
There is a single peak asα is varied, corresponding to the adsorption phase transition. The
peak increases in height and sharpens asn increases, which suggests that the peak will remain
in the infiniten limit. The peak moves towards smaller values ofα asn increases. In figure 3

Figure 2. Theα-dependence of∂2κn(α, β)/∂α
2 for n = 50 (4), n = 100 (♦), n = 200 (◦),

n = 400(?), n = 800 (•), n = 1000(×) andn = 1600(+) for β = 0.
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Figure 3. The mean number of visits per edge,〈v〉/n, as a function ofα atβ = 0 for n = 50 (4),
n = 100 (♦), n = 200 (◦), n = 400(?), n = 800 (•), n = 1000(×) andn = 1600(+).

Figure 4. Estimates of αc(n) for β = 0 using the location of the heat
capacity peak maxima (upper line) and the intercept construction (lower line) forn =
50, 100, 200, 400, 600, 800, 1000, 1200, 1600, and the corresponding least squares fits to the data
for n > 600.

we show the mean number of visits per edge,〈v〉/n, as a function ofα for the same values of
n. We see a large increase in〈v〉/n corresponding to the phase transition. Our estimates of the
phase transition location forβ = 0 plotted against 1/

√
n (we use the value of the cross-over

exponent obtained by Hegger and Grassberger (1995b)φ = 0.5) are shown in figure 4. The
graph is linear for largen values, and we have computed least squares fits to the data in the
linear regime, with weights proportional to the inverse of the variances. In table 1 we give our
estimates ofαc for three different values ofβ, β = −0.51, 0.0 and 0.18
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Table 1. Estimated location of the adsorption transition from the heat capacity peak maxima,
αIc (β), and from the tangent intercept of〈v〉/n, αIIc (β) for three values ofβ.

β αIc αIIc

−0.51 0.295± 0.027 0.297± 0.021
0.0 0.294± 0.014 0.296± 0.018
0.18 0.290± 0.020 0.290± 0.021

Figure 5. Estimates ofαc(n, β) using the location of the heat capacity peak maxima (full lines) for
β = −0.51 (♦), 0.0 (+) and 0.18 (�), and the intercept construction (dotted lines) forβ = −0.51
(×), 0.0 (4) and 0.18(?), together with the corresponding least squares fits to the data forn > 600.

4. Conclusion

We have investigated the shape of the phase boundary between the desorbed–expanded and
adsorbed–expanded phases of self-avoiding walks at an impenetrable plane on the simple cubic
lattice. We used the multiple Markov chain algorithm, based on a mixture of pivot and local
moves, to estimate the location of the phase transition. We have estimated the locations of
the heat capacity peak maxima for various values onn and extrapolated the data to obtain
the estimates ofαc(β) for three different values ofβ in the expanded regime. We have also
estimatedαc(β) extrapolating the estimates ofαc(n) obtained through the intercept method.

For the values ofn used,αc(n) depends onβ, but this feature goes away with increasing
n, and we believe that, at the thermodynamic limit,αc does not depend onβ in the expanded
regime. This is nicely illustrated in figure 5, where the estimates ofαc(n) versus 1/

√
n are

shown, together with the least squares fits to the largen data. The estimated values ofαc(β)
all lie within the error bars for the three different values ofβ.

Finally, we would like to note that even though this study is an extension of previous work
(Vrbová and Whittington 1996, Vrbová and Whittington 1998), there are still some interesting
features of the phase diagram not fully explained. These are, for example, the existence of a
phase transition between the adsorbed–expanded and desorbed–collapsed phases, and the way
in which the location of the collapsed phase boundary in the adsorbed region approaches the
infinite vertex–plane attraction limit.



Adsorption of self-avoiding walks 5475

Acknowledgments

This work was financially supported by the Grant Agency of the Czech Republic, grants
203/97/0243 and 203/99/P017. Most of the computations were performed at the MetaCentrum
computing facilities. The authors would like to thank Stuart G Whittington for helpful
conversations and correspondence.

References

Chang I and Meirovitch H 1993Phys. Rev.E 483656
Foster D, Orlandini E and Tesi M C 1992J. Phys. A: Math. Gen.25L1211
Geyer C J 1991 Markov chain Monte Carlo maximum likelihoodComputing Science and Statistics Proc. 23rd Symp.

on the Interface(Fairfax Station: Interface Foundation) pp 156–63
Grassberger P and Hegger R 1995aJ. PhysiqueI 5 597
——1995bPhys. Rev.E 512674
Hammersley J M, Torrie G M and Whittington S G 1982J. Phys. A: Math. Gen.15539
Hegger R and Grassberger P 1994J. Phys. A: Math. Gen.274069
Kremer K, Baumgartner A and Binder K 1981J. Phys. A: Math. Gen.152879
Lal M 1969Mol. Phys1757
Madras N and Slade G 1993The Self-Avoiding Walk(Boston, MA: Birkḧauser)
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